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Propagation of Propeller Tone Noise Through
a Fuselage Boundary Layer

D. B. Hanson*and B. Magliozzit
Hamilton Standard, Windsor Locks, Connecticut

In earlier experimental and analytical studies, it was found that the boundary layer on an aircraft could
provide significant shielding from propeller noise at typical transport airplane cruise Mach numbers. In this
paper, a new three-dimensional theory is described that treats the combined effects of refraction and scattering
by the fuselage and boundary layer. The complete wave field is solved by matching analytical expressions for the
incident and scattered waves in the outer flow to a numerical solution in the boundary-layer flow. The model for
the incident waves is a near-field frequency-domain propeller source theory developed previously for free-field
studies. Calculations for an advanced turboprop (prop-fan) model flight test at a Mach number of 0.8 show a
much smaller than expected pressure amplification at the noise directivity peak, strong boundary-layer shielding
in the forward quadrant, and shadowing around the fuselage. Results are presented showing the difference
between fuselage surface and free-space noise predictions as a function of frequency and Mach number.
Comparison of calculated and measured effects obtained in a prop-fan model flight test shows good agreement,
particularly near and aft of the plane of rotation at high cruise Mach number.

Nomenclature

B =number of blades

Bp = chord-to-diameter ratio

A, B, = unknown coefficients for boundary-layer wave

C,.B, =unknown coefficients for scattered wave

Cy =ambient speed of sound

E =Bri/w

G Qe =source wave coefficients [see Eq. (17)]

HD = Hankel function

J, = Bessel function of first kind

k =w/Cy

k, =radial wavenumber [Eq. (8)]

ko = chordwise source wavenumber [Eq. (12)]

k, =axial wavenumber

m = harmonic of blade passing frequency

M =Mach number of boundary-layer flow

M, = flight Mach number

M, = section relative Mach number

n = Fourier index for ¢ variation

D = acoustic pressure

P =radial variation of pressure

P, = unit solution of boundary-layer equation

1o,

NI =radii (see Fig. 4)

{ =time

I = thickness-to-chord ratio

U = background velocity of boundary-layer flow

X =axial coordinate, fixed to aircraft, positive in
direction of flow

Y, = Bessel function of second kind

z =radial coordinate in boundary layer [see Eq.
(201

2 = radius ratio on propeller

b, 0, = angles (see Fig. 4)

o = phase lag due to blade sweep
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00 = ambient density
w =radian frequency
Q = angular speed of propeller
v, =Fourier transform of chordwise thickness
distribution
Superscripts
¢ ) =3/9,
( )~ = complex conjugate
Introduction

HE advanced turboprop (prop-fan) has been in

technology development since 1976 as a fuel-efficient
propulsor for the 1990’s. As part of the development
program, a free-field noise theory! based on the acoustic
analogy was developed and found to agree well with 1977 test
results from an open-jet wind tunnel.? In 1981, a prop-fan
model was installed on a business aircraft as shown in Fig. 1
for flight noise tests. Microphones were mounted flush with
the fuselage surface in axial and circumferential arrays, as
shown in Fig. 2. Because of the small wavelength of the sound
and the large fuselage diameter, it was expected that the free-
space sound levels directly beneath the propeller would be
roughly doubled by reflection. However, it was found in early
tests that free-space theory, with the 6 dB correction for
pressure doubling, overpredicted measurements by 10 dB or
more under some conditions.

After investigating several possible explanations for this
overprediction, a simple analysis of the effect of the fuselage
boundary layer on incoming acoustic waves® was developed
that showed a powerful shielding effect at the high flight
Mach number (M, =0.8) of the test. The early analysis was
two-dimensional and treated plane waves impinging on a
boundary layer over a rigid plane surface. Results for both
step and linear boundary-layer profiles were given.
McAninch,* whose analysis included the refinements of a
near-field source and a curved boundary-layer profile, also
concluded that significant shielding could occur.

This paper presents an extension of the original theory® to
include effects of three-dimensionality; a near-field,
distributed, rotating source; and an arbitrary boundary-layer
profile using the geometry sketch in Fig. 3. The fuselage is
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modeled as an infinitely long, rigid, circular cylinder with a
boundary layer whose properties are constant along its length
and circumference.

Theoretical Method

The problem described above will be solved by dividing the
flowfield into a boundary-layer region and an outer region
assumed to be free of shear. Waves in these two regions will
be matched at the boundary-laver edge. Following methods
given by Morse,” the outer wave field is constructed
analytically from an incident wave appropriate to the source
and a scattered wave in the standard Hankel function form.
For the incident wave, a frequency-domain propeller
radiation theory already exists! that is ideally suited to this
analysis: its analytical form is in terms of the same Fourier
components that occur naturally in the scattered wave and
boundary-layer wave descriptions so that matching the fields
is easily accomplished.

In the boundary-layer region, the wave equation must be
solved by numerical methods because of the shear term. Over
most of the axial wavenumber range, this is easily ac-
complished with standard numerical integration methods.
However, for large positive wavenumbers, the wave equation
acquires a singular point and special methods are required.
Treatment of this singular point for the corresponding in-
compressible equation has received considerable attention in
the past by Tollmien,® Lin,” and Wasow® in conjunction with
boundary-layer instability theory. In more recent times, Tam
and Morris® have addressed the full compressible equation in
the analysis of radiation from shear-layer instability waves
and pointed out that a Frobenius series can be used in the
vicinity of the singular point. All of these investigators
concluded that when the problem is imbedded in the complex
plane, the singular point must be spanned by passing beneath
it. Treatment of the singular point herein is in accord with the
above references.

To establish the general form of waves in axisymmetric
shear flow, consider the fuselage-centered coordinates in Fig.
4 with positive x measured downstream from the propelier
plane of rotation. If the undisturbed velocity U is parallel to
the x axis and is a function of r only, then the acoustic
pressure outside the source region is given by Goldstein’s'?
Eq. (1.2.2}.

D 1 D? ap’
= (vip- 5 >—2U’—:O
Dt< P 2y Dt ax M

where primes denote d/r and the convective derivative is

D—£+Ua 2
Dt at dx @

Fig. 1 Flying test bed for model prop-fans.
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It is easily demonstrated that Eq. (1) admits elementary
solutions in cylindrical coordinates of the form

P( r) eikxxeindze— ot (3)

Since we are considering sound from a propeller with B blades
and angular speed Q, the frequency of the mth harmonic is
given by w=mBQ, and solutions at this frequency can be
constructed from linear combinations of Eq. (3) in the
following general form.

3

£
P= e—imBﬂ/ E einqb S

n=-—oo -

F, (k,)P(rye*=dk, 4

where the coefficients F, are to be found. The equation for
the radial part of the solution, P(r), can be found by sub-
stituting Eq. (3) into Eq. (1) with the Laplacian

V2_1a<ra>+1 2 @ S
Ty oor \ or r2agp?  ax? )

The result, with M= U/ ¢y, is

1
(Mk, —k) <P” + P P’) —2k.M'P’

+ (Mk,—k) [(ka—k)z— <kj+i:2—>]P:0 (6)

where k= w/c,. At this point we change notation and consider
the pressure to be normalized by p,¢f. Also, wavenumbers &
and k, and distances are referred to the boundary-layer
thickness é.

Construction of the Wave Field Outside the Boundary Layer

In the outer region the Mach number M is constant at the
flight speed value M, so that M’ =0 and Eq. (6) reduce to

1 n?
P + =P+ [(Mxkx—k)z— (kxz+r—2)]P=0 @

This is Bessel’s equation with solutions J, (k,r) and Y, (k,7)
where the radial wavenumber is

k=~ (Mk, —k)?—k? (8)

The combination of J, and Y, corresponding to outgoing
waves is the Hankel function

H =J,+iY, C)]
Thus, the scattered wave is given by

@

py=e-mb Y eind)g‘ E[C, (k) +iD, (k)]

n=-—o

x H{D (k,rye*dk, (10)

where the coefficients C, +iD, will be determined when the
wave fields inside and outside the boundary layer are
matched. The constant E = Br}/« has been extracted for later
convenience.

For the incident wave, a solution in the form of Eq. (4) is
easily adapted from an earlier paper by Hanson.! In Ref. 1,
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formulas were derived for near-field noise of propellers in
forward flight. The theory which treats steady monopole,
dipole, and quadrupole sources convected along helicoidal
paths via the acoustic analogy has been used routinely at
Hamilton Standard since 1977 for propeller and prop-fan
noise predictions. For economy of space, only the formula for
monopole (thickness) noise is given here. However, with the
information given, the solution for the other sources could be
written down immediately.

For an observer translating with the propeller at flight
Mach number M, the pressure in the mth harmonic of blade
passing frequency is given by

i oo
pi= e | g, | e Mok, k) W3 k)
root -
X JmB (krr'l'ZO)H/(n[lg (krrl )eikxxdkdeO (1 1)
where
2B,r
ko="—2"T (Mk,—k) (12)
~2ry MCA
¢s=—1r (ka—k)T 13)

r

and, as in Ref. 1, B is the number of blades, B the chord-to-
diameter ratio, ¢, the thickness-to-chord ratio, and ¥, the
chordwise spatial Fourier transform of the airfoil section
thickness distribution. ¢, is the phase lag due to sweeping a
blade section back along the advance helix by an amount
MCA. To establish Eq. (11) from Ref. 1, a change in notation
was made: the k of Ref. 1 was changed to —(M, k., —k)/k in
the present notation and &, is now the wavenumber of the
sound field in the flight direction. In Ref. 1, k, was the
chordwise source wavenumber, a role presently filled by k.

In Eq. (11), the coordinate system is centered in the
propeller axis. The observer is located at r;, ¢,, and x.
However, since the matching process is to be applied at the
edge of the fuselage boundary layer, the coordinate system for
Eq. (11) must be shifted from the propeller axis to the fuselage
axis as shown in Fig. 4. A Bessel function identity suited for
this is given in Ref. 11:

(kprep)d, (kor)e™  (14)

mB+n

TH ) (k= Y ALY

n=—

. Microphones

Fig. 2 Prop-fan model SR-3 mounted on Jetstar business aircraft
showing microphone array.
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When substituted into Eq. (11), this gives

D :e—imBQI E einq& S Pi,n (,.) eikxxdkx (15)

n=—oo

where the radial dependence is given by

P (ry=EM,k,—k)2J, (k,r) [Gpy (k) +iQ,, (k)] (16)

Mach no.
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Fig. 3 Geometry treated in analysis.
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Fig. 4 Shift of coordinate system from propeller axis to fuselage
axis.

Note: Correction factors are values
m, =0.787 to be added to free field
M = 0.816 predictions to obtain levels
expected on the fuselage surface.
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Fig. 5 Sample calculated correction factors for the Jetstar fuselage at
blade passage frequency for an eight-blade prop-fan.
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and
Gmn (kx) +ian (kx) = _iHl(n]§+n (kr'rCL)

1
x || Bhtue ¥ (ko) T Uy ri20) 42 (7)

Note that the integral in Eq. (17) contains all the source in-
formation.

In Egs. (15-17), the incident pressure field has been
decomposed into time, angle, and axial distance Fourier
components. This has been done analytically by virtue of
working in the frequency domain. In a time-domain source
description, this threefold Fourier decomposition would have
to be done numerically.

Computation of the Wave Field Inside the Boundary Layer

Pressure waves in the boundary layer are solutions to Eq.
(6) subject to the appropriate boundary condition at the
fuselage surface. Equation (6) is somewhat simplified here by
dropping the P’ /r term leaving

(Mk, —k)yP" =2k M'P' + (Mk,—k) [{(Mk,—k)?
— (k2 +k2)1P=0 as)

where, for n/r, we have written

k,=n/F (19)

where 7 is the distance from the fuselage center to the middle
of the boundary layer. This approximation is based on the
fact that the fuselage radius is much larger than the boundary-
layer thickness. Thus, the boundary-layer region will be
solved on a plane in Cartesian coordinates and then ‘‘wrapped
around’’ the fuselage. Periodicity in ¢ is guaranteed by
requiring that » be an integer. This approximation could be
eliminated easily, but it does not seem worthwhile at this point
considering that the assumptions of a uniform boundary layer
and a circular section fuselage are also approximate in most
cases. ‘

‘To solve Eq. (18), we shift the origin of the radial coor-
dinate to the fuselage '

r=ri+z (20)

so that the normal coordinate in the boundary layer is z,
which runs from 0 at the fuselage to 1 at the boundary-layer
edge. Over most of the range of interest in k,, Eq. (18) is
integrated by g standard Runge-Kutta method.

However, for k,>k/M,, the factor Mk, —k goes to zero
for some value of z between 0 and 1. This point, z,, is a
singular point of Eq. (18) and requires special treatment. The
method used here is to apply the Runge-Kutta integration
from z=0 to within a few mesh points of z, where it is
matched to a series solution about z,. The series solution
spans the singular point a few mesh points beyond z, where
the Runge-Kutta integration is continued to z=1.

For the series about z,, we use the method of Frobenius'? as
suggested by Tam and Morris.® This is straightforward to
apply and yields an indicial equation with roots equal to 0 and
3 so the two linearly independent series solutions are

Py=(z=2) [1+a,(z—z,) +a,(z~2,)°+...1 (2D
Pp=1+b,(2-2) +b,(2-2,)? +...+ CP4b(2—2)  (22)

With two series, the numerical result can be matched for P
and P’. The coefficients a,, b,, and C depend on the Mach

"
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number profile in the boundary layer and can be found by
substitution into Eq. (18).

When the series in Eqgs. (21) and (22) are matched to the
numerical result on the fuselage side of the singular point
(z<z,), a decision must be made regarding branches of the log
function. This issue has been discussed extensively in the
literature in conjunction with studies of boundary-layer in-
stability using the two-dimensional incompressible version of
Eq. (18). The early works by Tollmien,® Lin,” and Wasow?®
are summarized by Schlichting,'?> where it is shown that the
branch of the logarithm must be taken such that f(z—
Zs) =l lz—z,1 —iw for z<z,. This was proved by exami-
nation of a more complete fourth-order differential equation
for the flow that, because it includes viscosity, is not singular
at z,. Tam and Morris,® in their work on sound from com-
pressible shear-layer instability waves, arrived at the same
conclusion using different methods. They showed that the
singular point may be spanned by embedding the problem in
the complex plane and passing beneath z,.

With respect to the form that waves may take in the vicinity
of the critical layer (z=2,), Tam and Morris’® analysis and
the present analysis deal with different aspects of the same
physical problem. Hence, we follow their precedent and use
t(z—2z,) =tlz—z, | —inw forz<z,. '

For conditions with or without a singular point, unit
solutions B, (k,,z) to Eq. (18) for any k, and n are obtained
by integrating from z=0 to 1 starting with the following
boundary conditions:

P,(k,0)=1;  P,(k,0)=0 (23)

The general solution in the boundary-layer region is then

o oo

Py =m0 Y em& (A, (k) +iB, (k)]

n=—o

x P, (k.,z)e*xdk, 24)

where A, (k,) and B, (k) are to be found by matching to the
outer field.

Matching of Equations at the Boundary-Layer Edge

We now have expressions for the wave field outside the
boundary layer, P, + P; from Eqs. (10) and (15), and for the
boundary-layer wave field Py, from Eq. (24). These have to
be matched at the boundary-layer edge r=ry for all x, ¢, and
t. Here the matching is achieved equivalently in the
frequency/wavenumber domain for all k., n, and m. Thus,
the matching equations for pressure and its derivative are

E[(Mky—k)2d, (krp) (G +iQp)

+~(Cu +iDn)Hr(l]) (krrlz') ] = (An +iBn)ﬁn (k\)l) (25)

Ekr [ (M\k\ _k)z']r; (krr[{) (Gmn + iQnm)

+(C, +iD,) H,D (k,rg) 1= (A, +iB,) P} (k.. 1) (26)

The real and imaginary parts of these equations yield four
equations that can be solved for 4,, B,, C,, and D,, giving
the entire wave field. In particular, Eq. (24) gives the pressure
on the fuselage surface (z=0) with £, (k,, 0) = 1.

Amplification Plots

The theory derived above provides a means of predicting
the absolute amplitude and phase of propeller noise on a
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fuselage surface with a boundary layer. However, since the
purposes of this study are to investigate the effects of the
fuselage and boundary layer and to provide corrections to
free-space levels, most results are presented as amplifications.
Thus, 6 dB would represent the usual doubling effect of a
hard wall; lower amplifications indicate boundary-layer
shielding or fuselage shadowing.

Amplification is defined as the ratio (in decibels) between
the acoustic pressure with fuselage and boundary layer, to the
acoustic pressure at the same location in space but without the
fuselage and boundary layer. Thus,

(PBL ) rms

Amplification=20 log,, [ 5 ]dB @7

where both pressures are computed at »=r, and are functions
of x and ¢. In order to study fuselage effects without con-
fusion due chordwise and spanwise interference within the
propeller source, the blades were replaced by point sources at
80% of the blade radius. The chordwise thickness distribution
is compressed to a point by using the chordwise transform for
zero chord,

Y (ky) =¥ (0) (28)

which is the ratio of the area of an airfoil section to the
product of its chord and maximum thickness.

A plot of amplification as a function of x and ¢ for con-
ditions typical of the JetStar/prop-fan model flight tests is
shown in Fig. 5. Behind the plane of rotation, the com-
bination of boundary-layer attenuation and finite fuselage
diameter results in an amplification of about 4 dB (slightly
less than the 6 dB expected for full pressure doubling). At
forward locations, significant attenuation appears due to the
boundary-layer refraction effects. Transverse to the airplane
axis it can be seen that the peak amplification occurs at about
— 10 deg (see Fig. 5). This is a function of the direction of
rotation of the prop-fan due to the source directivity. As
would be expected, the amplification falls off on either side of
the centerline because of grazing incidence.

Theory Verification

Although the amplification curves presented above exhibit
the general behavior expected from previous experience with
respect to shielding and shadowing effects, the theory was
verified further in the numerical experiment described below.

First the scattering theory was checked by running some
limiting cases with an infinitesimally thin boundary layer. The
large wavelength behavior of the theory was verified by
running at JetStar case with the fuselage diameter reduced to
0.0001 ft. The resulting amplification was less than 0.05 dB,
indicating that a fuselage this small has negligible effect on
the source field. In order to check the small wavelength of the
theory, a fuselage diameter of 10 ft was used, producing an
amplification of 6.0 dB. This is the same as the pressure
doubling on an infinite plane, again verifying correct
behavior. To check behavior at intermediate wavelength,
comparisons were made with published curves for plane
waves impinging on cylinders with no flow.'"* When plane
waves were simulated by moving the source far from the
fuselage, the predicted surface pressures matched those of
Ref. 14.

Propagation within the boundary layer was checked by
reproducing McAninch’s two-dimensional amplitude results*
for individual frequencies and wavenumbers. This was done
by integrating Eq. (18) with £, =0.

Correlation with Model Prop-Fan Data in Flight

The available model data includes noise measurements
made under actual high-speed, high-altitude flight conditions.
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Fig. 6 Jetstar microphone arrangement.

Model prop-fan noise was measured using microphones flush-
mounted on the fuselage. Also, a limited number of test
flights were made with a ‘‘free-field”” microphone boom
installed above the prop-fan. The microphone installations
are shown in Fig. 6. Acoustic results from this series of tests
were reported in Ref. 15.

The boom contained four microphones installed at axial
locations and radial tip clearances corresponding to four
microphone locations on the JetStar fuselage. Because of its
thin boundary layer and small diameter (1.5 in.), it was ex-
pected that the boom noise levels would be representative of
levels in free space and, therefore, would be useful for direct
comparison with the fuselage levels. This turned out not to be
the case, since the convection effect reduces the wavelength of
noise at blade passing frequency to approximately 4 in., and
significant scattering occurs at the boom. However, the
present theory can be used to evaluate these effects by
comparing the calculated noise at the boom and fuselage and
then comparing that result with the corresponding
measurements. This is readily seen from the relationship

SPL, —SPL s =ASPL, (29)

SPL, —SPLs=ASPL, (30)

where SPLjy is the sound pressure level at the boom
microphone location, SPLys the free-space sound pressure
level, and SPL is the sound pressure level at the fuselage
microphone locations. Since the boom was located at the same
distance from the prop-fan center as the fuselage,
corresponding microphone locations have the same free-space
sound pressure level. By equating SPL in Egs. (29) and (30),
we obtain SPLz—SPL,=ASPL,;—ASPL,. Thus, the
measured SPL at the boom minus the measured SPL at the
fuselage is equal to the difference between the boom effects
and the fuselage effects. Since the latter is calculated by the
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Fig. 7 Comparison of measured and calculated
sound pressure levels at the Jetstar fuselage for
SR-3.
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Table1 Comparisons of measured and calculated fuselage effects for the JetStar test airplane

Flight Har- Microphone No. Measured SPL Calculated ASPL
Mach No.  monic Boom/Fuselage Boom Fuselage Boom Fuselage Measured A Calculated A
0.787 1 1/3 133.1 127.0 2.3 -1.7 6.1 4.0
2/4 — 136.0 2.8 0.5 — 23
3/5 143.0 140.4 3.2 0.8 2.6 2.4
4/7 146.1 141.3 3.2 1.3 4.8 1.9
2 1/3 129.8 110.4 2.6 —-14.9 19.4 17.5
2/4 — 129.1 3.3 -2.4 — 5.7
3/5 138.4 136.5 3.8 0.6 1.9 3.2
4/7 137.9 136.3 4.2 0.5 1.6 3.7
3 1/3 126.3 105.8 2.1 -21.9 20.5 23.0
2/4 — 120.5 33 -5.2 - 8.5
3/5 133.8 129.3 4.2 1.3 4.5 2.9
4/7 135.8 118.6 4.6 0.3 17.2 4.3
0.710 1 1/3 139.0 137.8 1.6 4.6 1.2 -3.0
2/4 145.6 142.0 2.1 3.0 3.6 -0.9
3/5 145.0 142.5 2.3 1.9 2.5 0.4
4/7 142.0 136.7 2.2 1.7 5.3 0.5
2 173 131.6 128.9 3.8 7.4 2.7 -3.6
2/4 137.6 135.0 4.0 4.3 2.6 -0.3
3/5 138.8 139.6 4.1 1.8 -0.8 2.3
4/7 141.1 125.8 4.5 1.1 15.3 3.4
3 1/3 128.6 126.3 4.1 9.3 2.3 -5.2
2/4 136.2 133.1 4.1 5.6 3.1 -1.5
3/5 136.1 132.9 4.1 1.9 3.2 2.3
4/7 130.9 121.4 4.2 0.2 9.5 4.0

present theory, a comparison can be made to evaluate the
calculations. This approach has the advantage of not
requiring that the prop-fan source characteristics be known.
Table 1 shows comparisons for several representative con-
ditions in the 0.6-0.8 flight Mach number range for the blade
passing frequency hamonic of the SR-3 model.

As can be seen from comparison of the last two columns of
Table 1, the agreement at M, =0.787 is generally good. The
trend showing that the fuselage boundary-layer effects are
stronger for the forward microphones is seen in both the
measurements and calculations. At the lower flight speeds,
the agreement is not as good. For the forward locations, the
calculations show amplifications caused by boundary-layer
refraction effects. The reason for these discrepancies which
occur away from the peak directivity at the lower flight speed
conditions will require further study.

Another way to evaluate the fuselage effects theory is to
calculate free-space sound pressure levels, apply the fuselage
correction, and then compare these with the measurements.
Figure 7 shows comparisons between measured and calculated
JetStar fuselage microphone data for the SR-3 model at BPF.
The free-field source levels were calculated using Hanson’s
frequency domain method! and the fuselage corrections were
calculated using the present analysis. As shown in Fig. 7, for a
Mach number of 0.787, the boundary-layer propagation
effects result in substantial attenuation at the forward
microphone locations. At the more rearward microphones,
the fuselage pressure amplification effects are about 1-2 dB.
The strong attenuation is well borne out by the measurements.
For the lower flight Mach number case, the method shows an
increase over free-field levels for all measurement locations.
In the aft locations, the increase is about 3-4 dB and is due to
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Fig. 8 Calculated fuselage
scattering effects in plane of ro-
tation at M, =0.8.
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Fig. 9 Boundary-layer/fuselage effects vs flight Mach number at
blade passing frequency.

pressure amplification caused by the fuselage. In the forward
locations, the effect is about 5-7 dB. This appears to be a
combination of fuselage reflection and a bending forward of
the source directivity pattern by refraction in the boundary
layer. This effect is somewhat overcalculated and it may be
that the full source representation is needed rather than the
rotating point sources used for generating correction curves.
Generally, the agreement between measurements and
calculations is improved by including the scattering and
boundary-layer propagation effects.

Theoretical Trends

It is of interest to explore trends in fuselage effects with
variations in operating parameters such as frequency and
flight speed. Also, because the present theory includes
fuselage scattering effects, it is possible to predict the
variation of noise circumferentially around the fuselage.

Fuselage Scattering Effects

Figure 8 shows the calculated correction factor as a func-
tion of angle around a representative fuselage. This
calculation was done assuming a negligible boundary layer for
a flight Mach number of 0.8. Near 0 deg, the fuselage
produces full pressure doubling. At positions around the
fuselage, the pressure reinforcing effects decrease and beyond
about 50 deg a shadow zone begins. On the opposite side of
the fuselage, near 180 deg, a strong shadow zone may be seen.
As expected, the shadow zone is stronger for 3XBPF than for
BPF, because the wavelength is shorter for the higher
frequency. Also, the 6 dB plateau is wider for the higher
harmonic. Finally, it may be noted that the pattern is not
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Fig. 11 Boundary-layer/fuselage effects vs frequency.

centered on 0 deg, but appears shifted by about 15 deg. This is
a result of the prop-fan direction of rotation, as was also seen
in Fig. 5.

Effect of Flight Speed

The boundary-layer refraction and fuselage scattering
effects depend on flight Mach number as illustrated in Fig. 9.
At a Mach number of 0.8, a modest pressure reinforcement
appears aft of the plane of rotation. Forward of the plane of
rotation, appreciable attenuation may be seen. The at-
tenuation is caused by refraction effects in the boundary
layer. At Mach numbers of 0.7 and 0.6, pressure rein-
forcement also appears aft of the plane of rotation. The effect
initially decreases in the forward direction, but then appears
to increase again. The 0.7 Mach number curve appears to
peak at about 1.5 ft, then shows a decrease. The 0.6 Mach
number curve is still rising beyond the range calculated. At 2
ft forward, the apparent fuselage effect is 9 dB. This is greater
than would be expected from a pressure amplification effect.
A possible explanation for this is that the propagation
through the boundary-layer results in an apparent change in
source directivity as illustrated in Fig. 10. In the absence of
any boundary layer, the acoustic ray would travel to the
receiver following the direct path. For the effective radius
source represented, the directivity angle is indicated as . With
the boundary layer present, the acoustic ray is refracted and
follows the path labeled ‘‘refracted path.”” As shown, the
refracted ray is at a directivity angle 6, which is closer to the
plane of rotation than angle §. The source characteristics are
such that the noise peaks near the visual plane of rotation, so
that there is significantly more noise along 6, than 6. The
receiver then observes more noise due to the apparent
directivity change caused by the refraction effects. At higher
flight speeds, or at further forward positions, refraction is
complete and the sound is greatly attenuated before reaching
the receiver. Apparently, for the 0.7 Mach number curve in
Fig. 9, the peak at 1.5 ft forward is due to the directivity
change caused by the boundary-layer refraction effects. The
correction then decreases again, as refraction becomes more
complete.
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Frequency Effects

The calculated fuselage boundary-layer effects are shown in
Fig. 11 as a function of frequency. For this illustration, the
effects were calculated for a flight Mach number of 0.7. The
effects of frequency are seen in the three harmonics of blade
passing frequency calculated. At low frequency, the behavior
is as discussed previously. At 2XBPF, the peak has moved aft,
consistent with a sharper source directivity. It can be seen that
beyond 1.5 ft, the exponential decay effect has occurred,
because full refraction through the boundary layer is oc-
curring. At 3XBPF, the peak is still further aft.

Conclusions

A new theoretical method has been developed to correct
free-field propeller noise measurements and predictions for
the presence of a fuselage and its boundary layer. Incident
waves are calculated from a verified near-field propeller
source theory. Effects of scattering by the fuselage/boundary
layer and refraction in the boundary layer are rigorously
accounted for. In order to evaluate fuselage effects in general,
without the complexity of chordwise and spanwise in-
terference within the source, the propeller representation was
reduced to a rotating point source for each blade. As expected
from previous experience, the theory predicts strong at-
tenuation forward of the propeller at cruise Mach numbers
such as 0.8. Also, shadow regions are generated on the side of
the fuselage away from the propeller. At a cruise Mach
number of 0.8, the theory predicts only a 1 dB amplification
of the noise directivity peak rather than the 6 dB that would be
expected from simple pressure doubling.

Comparison of calculations with measurements obtained at
a high cruise Mach number for a prop-fan model on a
business jet aircraft show good agreement. At lower flight
speeds, the theory shows amplification at forward angles that
may be due to apparent source directivity changes caused by
refraction in the boundary layer. This aspect of the predic-
tions is not in good agreement with the data and it is possible
that the more complete source description of the general
theory should be used rather than the point source reresen-
tation.

The calculated fuselage scattering/boundary-layer
refraction effects show a strong dependence on frequency. In
the region aft of the plane of rotation the pressure rein-
forcement effects approach 6 dB at higher frequencies. In the
forward direction, the refraction effects result in substantial
attenuation that becomes larger with increasing frequency.
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